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The discontinuous Galerkin (DG) method is a favorable alternative to the finite volume (FV) method, which is often used in
astrophysical codes dealing with MHD. DG methods offer higher order accuracy and reduced diffusion compared to the finite volume
method while keeping the scheme highly parallelizable. The MHD equations are nonlinear, and in order not to suffer from a very
small time step due to the CFL condition for stability of time discretization, we choose implicit and unconditionally stable scheme
- Crank-Nicolson. Therefore, we need to solve a nonlinear problem in each time step, which involves non-differentiable numerical
fluxes (such as HLLD), so care must be taken when applying the Newton’s method. We propose in this work constructing the
jacobian by numerical differentiation from the residual and using damped Newton’s method. Another complexity of solving MHD
equations using DG is satisfying zero divergence, often achieved by techniques such as divergence cleaning, or Constrained-Transport
(CT). In this work, we chose another approach - using exactly divergence-free space for representation of the magnetic field. This
work is being implemented using the FE libraries deal.II and Trilinos in 3D and fully parallel/distributed manner, and once finished
will be available at a public software repository.

Index Terms—MHD, Discontinuous Galerkin, HLLD, numerical differentiation, divergence-free finite elements

I. INTRODUCTION

There are several phenomena in the universe that we can
look at as magnetohydrodynamic in nature - planets consisting
of metals, interplanetary space, stars. As for the stars, these
phenomena include spots, solar flares, solar winds, space
weather. To study these phenomena, it is important that we are
able to model them at a reasonable scale, in a reasonable detail,
but most importantly - model them in a physically correct way.
This means that on the path from our physical / mathematical
model to numerical solutions [1], our algorithms should not
spoil the solution by introducing non-physical oscillations, be
in conflict with the model (having div B = 0), add artificial
diffusion, etc.

II. MHD EQUATIONS, DG METHOD

Ideal MHD equations in the conservative form read:

∂Ψ

∂t
+∇ · F (Ψ) = S, (1)

where Ψ is the state vector, Fi, i = 1, 2, 3 are the fluxes, and
S is the source term:

Ψ= (ρ, π1, π2, π3, U,B1, B2, B3) , (2)
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S= (0, ρg1, ρg2, ρg3,π · g, 0, 0, 0) . (4)

DG formulation of the resulting space-discretized problem
reads∫
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where vh is a test function, ΓI is a set of all internal interfaces
in the mesh, and Γij ∈ ΓI an interface between two elements
- Ki and Kj . Similarly ΓB is a set of all boundary interfaces
in the mesh, and Γi ∈ ΓB an interface on the boundary that
neighbors the element Ki. Meaning of Ψh|i depends on the
boundary conditions.

H (Ψh|ij ,Ψh|ji,nij) is the numerical flux between states
Ψh|ij and Ψh|ji in the direction of nij .

Deriving the fully (space- and time-) discretized problem
using Crank-Nicolson scheme is straightforward.

III. SOLVING THE NONLINEAR PROBLEM

We would like to use the Newton’s method to solve the
nonlinear problem arising from discretizing (5) in time us-
ing Crank-Nicolson scheme. Damped Newton’s method (with
damping factor α) performs iterations
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xn+1
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for n = 0, ..., where R
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is the residual, J
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the jacobian, x0
k+1 = xk and xk is the DG solution

vector from the k-th time step. For the residual, we have
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where vhi is the i-th test function, and Ψh is the (global)
function corresponding to x.

The jacobian J
(
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)
=

dR(xn
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dxn
k+1

is calculated numeri-
cally (numerical differentiation implementation from Trilinos
package Sacado is used).

The iterations in (6) are performed until ||R
(
xnk+1

)
|| is

lower than a prescribed threshold.

IV. FURTHER CONSIDERATIONS

There are several topics to be dealt with when solving
MHD equations numerically using the DG method. First
one is the selection of numerical flux H (Ψh|ij ,Ψh|ji,nij)
that should be as little diffusive as possible, and should
satisfy the relations H (Ψh,Ψh,n) = F (Ψh) · n and
H (Ψ1,Ψ2,n) = H (Ψ2,Ψ1,−n). For the ideal MHD we
chose the HLLD flux designed in [9].

Another aspect of the solution, which occurs both in
continuous and discontinuous FE simulations of the MHD
system are spurious (nonphysical) oscillations appearing in
the solution near discontinuities or sharp fronts. Here, in DG,
the problem is much smaller than in the continuous case, as
the instabilities occur only in regions adjacent to the sharp
fronts. Our goal is to build a software package that should
give a reasonable and physically correct solution to all sorts
of problems, a suitable method to handle discontinuities
must not change the physics (as is the case in e.g. artificial
diffusion) and must not require fine-tuning parameters for it
to work. Therefore we chose a parameter-less method of post-
processing nature (which does not change the equations being
solved). Such a method is the Vertex-based limiter developed
in [6], and successfully applied to DG for advection-diffusion
problems in [7].

Last problem, which again is present regardless of the
presence of the continuity of the sought solution, is satisfying
Gauss’s law, i.e. the relationship

div B = 0, (8)

to tackle this, an exactly divergence free FE space [4] is a
mathematically clean and fully reliable method how to satisfy
the relation 8, as opposed to methods of divergence cleaning,
or Constrained-Transport (CT). In order to create a generic
solver, it is a very favorable method.

V. NUMERICAL RESULTS

We present results from one benchmark - MHD Blast -
designed in [8].

The figures below are performed with a standard set of basis
functions for DG - i.e. not with the exactly divergence free
basis we want to use according to [4] - that is a work-in-
progress currently and it shall only stabilize and qualitatively
improve the results.

The following figures show the density, magnitude of mo-
mentum, magnitude of magnetic field, and the pressure in the
region −0.5 ≤ x ≤ 0.5;−0.5 ≤ y ≤ 0.5.

Fig. 1. MHD Blast benchmark results
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